

СИСТЕМЫ УПРАВЛЕНИЯ РОБОТИЗИРОВАННЫМИ СРЕДСТВАМИ ПРОИЗВОДСТВА

МАРКЕТИНГОВЫЙ ОТЧЁТ ПО НАПРАВЛЕНИЯМ ДЕЯТЕЛЬНОСТИ ЦТТ ИТМО СЕНТЯБРЬ 2025Г.

СИСТЕМЫ УПРАВЛЕНИЯ РОБОТИЗИРОВАННЫМИ СРЕДСТВАМИ ПРОИЗВОДСТВА

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ, СНИЖЕНИЕ ИЗДЕРЖЕК И УСКОРЕНИЕ ВЫПУСКА ПРОДУКЦИИ

что это?

АППАРАТНОЕ ОБЕСПЕЧЕНИЕ: КОНТРОЛЛЕРЫ, ДАТЧИКИ, ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ.
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ: СИСТЕМЫ УПРАВЛЕНИЯ, ИНТЕРФЕЙСЫ, АЛГОРИТМЫ ОБРАБОТКИ ДАННЫХ

ЗАДАЧИ

СОКРАЩЕНИЕ ЧЕЛОВЕЧЕСКОГО ФАКТОРА В ПОВТОРЯЮЩИХСЯ ОПЕРАЦИЯХ.
ПОВЫШЕНИЕ СКОРОСТИ И ТОЧНОСТИ ПРОИЗВОДСТВЕННЫХ ЛИНИЙ.
ОПТИМИЗАЦИЯ РАСХОДА МАТЕРИАЛОВ И ЭНЕРГИИ.
ПОДДЕРЖКА КОЛЛАБОРАТИВНОЙ РАБОТЫ РОБОТОВ И ЛЮДЕЙ.

АКТУАЛЬНОСТЬ

КОНКУРЕНЦИЯ В ПРОМЫШЛЕННОСТИ РАСТЕТ, ИЗ-ЗА ЧЕГО ВОЗНИКАЕТ НЕОБХОДИМОСТЬ СНИЖЕНИЯ СЕБЕСТОИМОСТИ

МИРОВЫЕ ТРЕНДЫ И ПРОГНОЗЫ

КЛЮЧЕВЫЕ ПОКАЗАТЕЛИ

Установки роботов в 2024: > 590 тыс

Прогноз 2025: ≈ 650 тыс. установок

Совокупный парк роботов: > 4,5 млн единиц

(вдвое больше, чем 5 лет назад)

Рынок СУРП 2025: 1,3 трлн ₽ (~\$13,7 млрд)

Прогноз к 2030: 2,3 трлн ₽ (~\$24 млрд), CAGR ≈

12-13 %

ТЕХНОЛОГИЧЕСКИЕ ТРЕНДЫ

Переход от «жесткой автоматизации» к адаптивным, интеллектуальным системам управления

АІ и машинное зрение для обработки данных и анализа производственных процессов

Управление роботами становится частью цифровой экосистемы предприятия

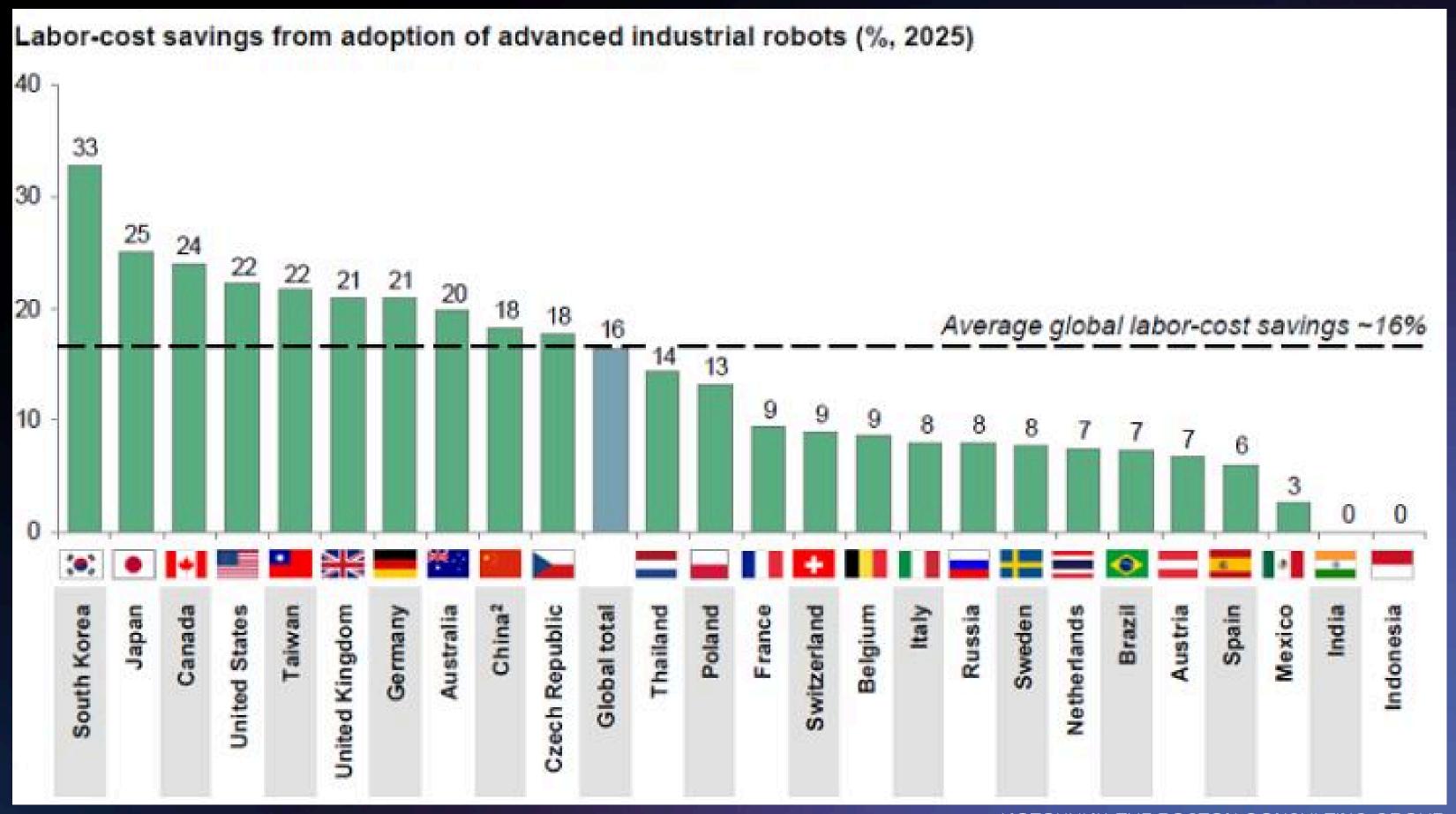
ГЛАВНЫЕ ДРАЙВЕРЫ

Дефицит рабочей силы

Повышение производительности

Рост спроса на гибкие производственные линии

ГЕОГРАФИЯ РАЗВИТИЯ


Азия: Китай — 52 % мирового рынка новых установок; Южная Корея и Япония — >1000 роботов на 10 тыс. работников

США: инвестиции в логистику и складскую роботизацию

Европа: акцент на «зелёные» технологии и энергоэффективность

МАГИЧЕСКИЙ КВАДРАНТ GARTNER 2025 ДЛЯ РОБОТИЗИРОВАННОЙ АВТОМАТИЗАЦИИ ПРОЦЕССОВ

ИСТОЧНИК: THE BOSTON CONSULTING GROUP

СОГЛАСНО НОВОМУ ОТЧЕТУ THE BOSTON CONSULTING GROUP, К 2025 ГОДУ СРЕДНЕСТАТИСТИЧЕСКИЙ РАБОТОДАТЕЛЬ В ОБРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ БУДЕТ ПЛАТИТЬ НА 16% МЕНЬШЕ ЗА РАБОЧУЮ СИЛУ, ЗАМЕНИВ ЛЮДЕЙ РОБОТАМИ. ПРОМЫШЛЕННЫЕ РОБОТЫ СТОЯТ ДЕШЕВЛЕ И ОБЛАДАЮТ БОЛЬШЕЙ МАНЕВРЕННОСТЬЮ, ЧЕМ ИХ ПРЕДШЕСТВЕННИКИ, ЧТО ПОЗВОЛЯЕТ НЕБОЛЬШИМ КОМПАНИЯМ ИСПОЛЬЗОВАТЬ ИХ ДЛЯ ВЫПОЛНЕНИЯ БОЛЕЕ СЛОЖНЫХ ПОВТОРЯЮЩИХСЯ ЗАДАЧ

СТАТИСТИКА В РФ

ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО

• В 2025 ГОДУ ОБЪЕМ РЫНКА ПРОМЫ<mark>ШЛЕННЫХ РОБОТОВ</mark> И СВЯЗАННЫХ СИСТЕМ УПРАВЛЕНИЯ ОЦЕНИВАЕТСЯ ПРИМЕРНО В 60-70 МЛРД ₽. ОСНОВНОЙ СПРОС ФОРМИРУЮТ АВТОПРОМ, МЕТАЛЛУРГИЯ, МАШИНОСТРОЕНИЕ, А ТАКЖЕ ЛОГИСТИКА И СКЛАДСКИЕ КОМПЛЕКСЫ

СРАВНЕНИЕ

• ПО ДАННЫМ МЕЖДУНАРОДНОЙ ФЕДЕРАЦИИ РОБОТОТЕХНИКИ (IFR), УРОВЕНЬ РОБОТИЗАЦИИ РОССИИ В 2023–2024 ГГ. СОСТАВИЛ ОКОЛО 6–7 РОБОТОВ НА 10 000 РАБОТНИКОВ В ПРОМЫШЛЕННОСТИ. ДЛЯ СРАВНЕНИЯ: В ЮЖНОЙ КОРЕЕ ЭТОТ ПОКАЗАТЕЛЬ ПРЕВЫШАЕТ 1 000, В ГЕРМАНИИ — ОКОЛО 400, В КИТАЕ — 392. ЭТО ГОВОРИТ О ЗНАЧИТЕЛЬНОМ ОТСТАВАНИИ, НО И О БОЛЬШОМ ПОТЕНЦИАЛЕ ДЛЯ РОСТА

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

• ВЫСОКАЯ РОЛЬ ГОСУДАРСТВА И ГОСКОРПОРАЦИЙ В РАЗВИТИИ ОТРАСЛИ. ВЕДУЩИМИ ЗАКАЗЧИКАМИ РОБОТИЗИРОВАННЫХ СИСТЕМ ОСТАЮТСЯ «РОСАТОМ», «РОСТЕХ», «КАМАЗ», ПРЕДПРИЯТИЯ АВИАПРОМА И МЕТАЛЛУРГИИ. ЧАСТНЫЕ КОМПАНИИ ПОДКЛЮЧАЮТСЯ ОГРАНИЧЕННО, В ОСНОВНОМ В ЛОГИСТИКЕ (OZON, WILDBERRIES, «СБЕРЛОГИСТИКА»).

КЛЮЧЕВЫЕ ИГРОКИ РЫНКА

Мир:

ABB (Швейцария) — лидер в области промышленных роботов и систем управления, сильные позиции в автопроме, электронике и энергетике.

Fanuc (Япония) один из крупнейших производителей роботов-манипуляторов и ЧПУ, широко применяемых в машиностроении и металлообработке.

KUKA (Германия) — специализируется на промышленной автоматизации, особенно в автомобильной промышленности.

Yaskawa (Япония) — производитель роботов и приводов, активно работает в Азии и Европе.

Universal Robots (Дания) — лидер в сегменте коллаборативных роботов (cobots), которые внедряются в малый и средний бизнес.

Посударство: Росатом — куратор программ по внедрению роботизированных комплексов в атомной и машиностроительной промышленности; Ростех — внедряет роботизированные решения для оборонки, авиапрома и машиностроения

Компании: КАМАЗ — активно внедряет промышленных роботов в сварке и сборке автомобилей, сотрудничает с Fanuc и KUKA; Сберроботика — развивает сервисных и промышленных роботов, интегрируя их в логистику и ритейл

<mark>№ Наука и образование: ИТМО, МФТИ, МГТУ</mark> им. Баумана — университеты-разработчики алгоритмов управления и цифровых двойников для промышленности

СРАВНЕНИЕ

мировой рынок

- Рынок систем управления роботизированными средствами в 2025 году оценивается примерно в 1,3 трлн ₽ (≈ \$16 млрд)
- Средний показатель уровня роботизации (2024)
 около 150 роботов на 10 000 работников в промышленности
- Э Венчурные вложения в робототехнику в мире
 (2024) \$6,4–7,5 млрд (≈ 500–600 млрд ₽)
- Э Ключевые отрасли: автопром, электроника, логистика, медицина

РОССИЙСКИЙ РЫНОК

- Рынок систем управления роботизированными средствами в 2025 году оценивается примерно в 60-70 млрд ₽. То есть доля России составляет менее 1 % от глобального оборота
- Средний показатель уровня роботизации (2024) около 6−7 роботов на 10 000 работников
- Венчурный рынок ограничен единицами сделок и оценивается менее чем в 10 млрд ₽ в год. Основной инвестор — государство
- У Ключевые отрасли: автопром, металлургия, авиапром, логистика (в меньшей степени электроника)

ОСНОВНЫЕ ОТРАСЛИ ПРИМЕНЕНИЯ

СИСТЕМЫ УПРАВЛЕНИЯ РОБОТАМИ ПРИМЕНЯЮТСЯ ВО ВСЕХ ВЕДУЩИХ СЕКТОРАХ ЭКОНОМИКИ, ГДЕ ВАЖНА ТОЧНОСТЬ, СКОРОСТЬ И НАДЁЖНОСТЬ

- ВЕТОПРОМ КРУПНЕЙШИЙ ПОТРЕБИТЕЛЬ: БОЛЕЕ 40 % ВСЕХ ПРОМЫШЛЕННЫХ РОБОТОВ В МИРЕ ИСПОЛЬЗУЕТСЯ В ПРОИЗВОДСТВЕ АВТОМОБИЛЕЙ. УПРАВЛЕНИЕ ВКЛЮЧАЕТ СВАРКУ, ПОКРАСКУ, СБОРКУ. В РОССИИ ПРИМЕР КАМАЗ, АВТОВАЗ
- МЕТАЛЛУРГИЯ И МАШИНОСТРОЕНИЕ ВНЕДРЯЮТСЯ СИСТЕМЫ УПРАВЛЕНИЯ РЕЗКОЙ, СВАРКОЙ, ОБРАБОТКОЙ ДЕТАЛЕЙ. В РФ АКТИВНЫ ПРЕДПРИЯТИЯ «СЕВЕРСТАЛЬ» И УРАЛМАШ
- ЭЛЕКТРОНИКА ВЫСОКОТОЧНЫЕ ЛИНИИ СБОРКИ МИКРОСХЕМ И ПЛАТ. В АЗИИ ОДИН ИЗ ГЛАВНЫХ ДРАЙВЕРОВ РОСТА, В РФ ПОКА ТОЧЕЧНЫЕ ПИЛОТЫ

ОСНОВНЫЕ ОТРАСЛИ ПРИМЕНЕНИЯ

СИСТЕМЫ УПРАВЛЕНИЯ РОБОТАМИ ПРИМЕНЯЮТСЯ ВО ВСЕХ ВЕДУЩИХ СЕКТОРАХ ЭКОНОМИКИ, ГДЕ ВАЖНА ТОЧНОСТЬ, СКОРОСТЬ И НАДЁЖНОСТЬ

- ПОГИСТИКА И СКЛАДЫ АКТИВНО РАСТУЩИЙ РЫНОК. СИСТЕМЫ УПРАВЛЕНИЯ КООРДИНИРУЮТ АВТОНОМНЫЕ ТЕЛЕЖКИ, СОРТИРОВЩИКИ, ДРОНЫ. В РОССИИ ТАКИЕ ПРОЕКТЫ ЗАПУСКАЮТ OZON, WILDBERRIES И СБЕРЛОГИСТИКА
- ФАРМАЦЕВТИКА И ХИМИЯ РОБОТЫ УПРАВЛЯЮТ ПРОЦЕССАМИ ДОЗИРОВКИ, УПАКОВКИ, РАБОТЫ С ТОКСИЧНЫМИ ВЕЩЕСТВАМИ. В РФ ПОКА РЕДКОСТЬ, НО МИРОВЫЕ ТРЕНДЫ ЗАДАЮТ ТЕМП
- ЭНЕРГЕТИКА И ДОБЫВАЮЩАЯ ПРОМЫШЛЕННОСТЬ ИСПОЛЬЗОВАНИЕ В НЕБЕЗОПАСНЫХ УСЛОВИЯХ (ШАХТЫ, НЕФТЕГАЗ). УПРАВЛЕНИЕ ОБЕСПЕЧИВАЕТ НАДЁЖНОСТЬ И СНИЖАЕТ РИСКИ ДЛЯ ЛЮДЕЙ
- ОБОРОННАЯ И АВИАЦИОННАЯ ПРОМЫШЛЕННОСТЬ РОСАТОМ, РОСТЕХ И ОАК ПРИМЕНЯЮТ РОБОТИЗИРОВАННЫЕ ЛИНИИ ДЛЯ СВАРКИ И КОМПОЗИТНЫХ МАТЕРИАЛОВ

ОБОСНОВАНИЕ АКТУАЛЬНОСТИ РЫНКОВ

ПОЧЕМУ ИНВЕСТИРОВАТЬ СЕЙЧАС

РЫНОК СИСТЕМ УПРАВЛЕНИЯ РОБОТИЗИРОВАННЫМИ СРЕДСТВАМИ ПРОИЗВОДСТВА В РОССИИ

- по данным Next Move Strategy Consulting, российский рынок автоматизации промышленных процессов в 2023 году оценивался в 3,38 млрд долларов США и прогнозируется его рост до 4,07 млрд долларов сша к 2030 году при среднем годовом темпе роста (CAGR) 2,1%
- количество установленных роботов в 2024 году: 20 864 единицы, что на 62% больше по сравнению с 2023 годом

СПРОС НА АВТОМАТИЗАЦИЮ И УПРАВЛЕНИЕ РОБОТАМИ

- проблемы с нехваткой рабочей силы: по данным Rabota.ru, только 25% российских компаний планируют нанимать новых сотрудников с сентября 2025 года, что является резким снижением по сравнению с 56% в конце 2024 года
- в условиях дефицита рабочей силы и необходимости повышения производительности, российские предприятия активно внедряют системы управления роботизированными средствами производства. План X5 group: увеличить рыночную долю с 15% до 20% к 2028 году, активно внедряя автоматизацию и роботизацию в логистические и торговые процессы

ГОСУДАРСТВЕННАЯ ПОДДЕРЖКА И ИНВЕСТИЦИИ

- государственные программы и субсидии стимулируют предприятия к внедрению отечественных решений в области систем управления роботизированными средствами производства.
- пример поддержка Фонда развития промышленности (ФРП), который финансирует проекты по автоматизации и роботизации на российских предприятиях

РЫНОК АВТОМАТИЗАЦИИ ПРОМЫШЛЕННЫХ ПРОЦЕССОВ В РОССИИ

- объем рынка в 2023 году: 3,38 млрд долларов США (≈ 270,4 млрд рублей)
 прогноз на 2025 год: ожидается рост до 3,61 млрд долларов сша (≈ 288,8 млрд рублей)
 среднегодовой темп роста (CAGR): 2,1% в период с 2024 по 2030 годы

АНАЛИЗ ДАННЫХ РЫНКОВ ПОЗВОЛЯЕТ ВЫЯВИТЬ КЛЮЧЕВЫЕ НАПРАВЛЕНИЯ ДЛЯ РАЗВИТИЯ СРЕДСТВ ПРОИЗВОДСТВА, ОПРЕДЕЛИТЬ ТОЧКИ РОСТА И РАЗРАБОТАТЬ СТРАТЕГИИ ДЛЯ ПОВЫШЕНИЯ КОНКУРЕНТОСПОСОБНОСТИ ОТЕЧЕСТВЕННЫХ ТЕХНОЛОГИЙ И ОБОРУДОВАНИЯ.

SWOT-АНАЛИЗ НАПРАВЛЕНИЯ ДЛЯ РОССИИ

СИЛЬНЫЕ СТОРОНЫ

ГОСУДАРСТВЕННАЯ ПОДДЕРЖКА

наличие программ и субсидий для предприятий, внедряющих системы управления роботизированными средствами производства

РАЗВИТИЕ ОТЕЧЕСТВЕННЫХ ТЕХНОЛОГИЙ

создание и внедрение российских решений в области автоматизации и управления роботами

🕠 КВАЛИФИЦИРОВАННЫЕ КАДРЫ

наличие специалистов в области ИТ и инженерии, готовых разрабатывать и внедрять системы управления роботами

СЛАБОСТИ

→ ВЫСОКИЕ ПЕРВОНАЧАЛЬНЫЕ ЗАТРАТЫ

> значительные инвестиции, требуемые для внедрения систем управления роботами, могут быть препятствием для малых и средних предприятий

→ НЕХВАТКА ИНФРАСТРУКТУРЫ

отсутствие необходимой инфраструктуры для широкомасштабного внедрения систем управления роботами

→ НЕДОСТАТОК СТАНДАРТОВ И РЕГУЛЯЦИЙ

отсутствие единых стандартов и нормативных актов в области систем управления роботами, что затрудняет их внедрение и использование

возможности

→ РОСТ СПРОСА НА АВТОМАТИЗАЦИЮ

увеличение потребности в автоматизации производственных процессов для повышения эффективности и снижения затрат

РАЗВИТИЕ НОВЫХ РЫНКОВ

возможность выхода на новые рынки, включая экспорт отечественных систем управления роботами

→ ГОСУДАРСТВЕННЫЕ ИНИЦИАТИВЫ

поддержка со стороны государства в виде налоговых льгот, субсидий и грантов для предприятий, внедряющих системы управления роботами

УГРОЗЫ

→ КОНКУРЕНЦИЯ СО СТОРОНЫ ЗАРУБЕЖНЫХ ТЕХНОЛОГИЙ

преимущество иностранных решений в области систем управления роботами может затруднить продвижение отечественных разработок

→ БЫСТРОЕ УСТАРЕВАНИЕ ТЕХНОЛОГИЙ

скорость развития технологий в области автоматизации и управления роботами требует постоянных инвестиций в обновление и модернизацию систем

→ РИСКИ КИБЕРБЕЗОПАСНОСТИ

увеличение числа кибератак и угроз безопасности данных в связ с внедрением систем управления роботами

ТЕХНОЛОГИЧЕСКИЕ ТРЕНДЫ 2025-2027

Тренд	Почему это важно	Примеры
1. Усиленная интеграция ПО с аппаратурой: edge / real-time контроль	Минимальная задержка, управление роботами прямо на линии, меньше зависимость от внешнего облака. Необходимы скоростные контроллеры, сенсоры, быстрые двигатели	В отчёте Rockwell Automation упоминается, что один из ключевых трендов для 2025 — edge-компьютинг для обработки данных с сенсоров прямо на производстве
2. Цифровые двойники (digital twins) и симуляция	Позволяют моделировать поведение системы, оптимизировать управление прежде чем внедрять, снижая риски и сокращая время запуска. Особенно важно для сложных роботизированных линий	В Russia Robot Software Market прогнозируется рост рынка программного обеспечения, включая симуляцию, с USD 230,9 млн в 2023 до USD 1021,8 млн к 2030 г.
3. Коллаборативные и безопасные человеко-робот взаимодействия (Cobots, HRC)	Растёт запрос, чтобы роботы могли работать рядом с людьми, обрабатывать непредсказуемое окружение, автоматически снижать мощность, останавливать движения в критичных ситуациях	Тенденции Rockwell Automation: "Robots and Cobots — Enhancing precision, safety"
4. Улучшенные системы сенсорики, зрение, машинное обучение	Роботы получат лучшие камеры, LIDAR, тензодатчики, что позволяет точнее позиционироваться, корректировать траектории, адаптироваться к дефектам, работать с неструктурированными материалами.	В отчёте Russia Robot Software Market: значительная часть роста будет за счёт recognition software и анализа данных с сенсоров
5. Более гибкие архитектуры управления, распределённость (Edge-Cloud, ROS2 и др.)	Системы, где часть задач — локально, часть — в облаке / на сервере / на переферии, с возможностью лёгкой масштабируемости и обновлений	"Distributed Robotic Systems in the Edge- Cloud Continuum with ROS2" описывают, как начинают строиться такие архитектуры
6. Повышение автоматизации настройки и адаптации	Быстрая перенастройка линий, смена продукта, адаптивные управляющие алгоритмы— меньше простоев, меньше ручной переналадки	В отраслевых трендах "Automation Technology: 5 Game-Changing Trends" отмечается, что компании хотят снижение времени простоя до 20-40% через автоматизацию

ТЕХНОЛОГИЧЕСКИЕ ТРЕНДЫ К 2030

Тренд	Почему это важно	Примеры
1. Автономные роботы с самообучающимися системами управления	Роботы, которые через машинное обучение адаптируются к новой продукции, меняющемуся окружению, восстанавливают функциональность после сбоев. Отчасти уменьшение роли ручной настройки и опыта оператора.	Исследования "Human-Centered Al and Autonomy in Robotics" обещают рост интереса к автономии и когнитивным способностям роботов.
2. Модульность и реконфигурируемость	Модули оборудования, сменные захваты, подвижная структура ячеек, возможность "перестроить" линию или робота под разные задачи без полной замены.	исследования модульных роботов, self- reconfiguring modular robots.
3. Унификация стандартов, безопасность, нормативы	Чтобы роботы и системы управления могли работать по единым правилам, особенно с точки зрения кибербезопасности, ответственности, качества. Это важно, когда системы смешаны: отечественное + импортное.	Пока мало конкретных цифр, но roadmap'ы и отраслевые отчёты указывают, что безопасность и соответствие стандартам станет одним из ключевых барьеров и драйверов
4. Связь 5G/6G, Internet of Robotic Things, умные сенсорные сети	Постоянная связь, низкие задержки, возможность централизованного мониторинга и управления распределённых роботов. Умные датчики и сети дают поток данных для анализа в реальном времени.	Тренды Rockwell Automation отмечают рост роли сетей и связи в автоматизации производства
5. Повсеместное применения цифровых двойников + виртуальная/дополненная реальность для обслуживания и обучения	Обучение операторов в VR/AR, диагностика и ремонт через удалённую визуализацию, мониторинг состояния оборудования. Плюс: снижение затрат на простой и ошибки.	Russia Robot Software Market отмечает рост ПО, включая digital twins и симуляции
6. Энергетическая эффективность и экосистемный контроль (железо + софт + энергия)	Системы управления будут учитывать энергопотребление, экологические стандарты, отходы производства. Управление не просто "двигателем + датчиком", а всей цепочкой влияния.	Общий мировой тренд на устойчивость в промышленности, "Industry 5.0", "зелёная" роботизация. Меньше конкретных данных по РФ, но это направление уже видно в европейских roadmap

КЛЮЧЕВЫЕ ВЫВОДЫ

ОСНОВНЫЕ СФЕРЫ ВНЕДРЕНИЯ

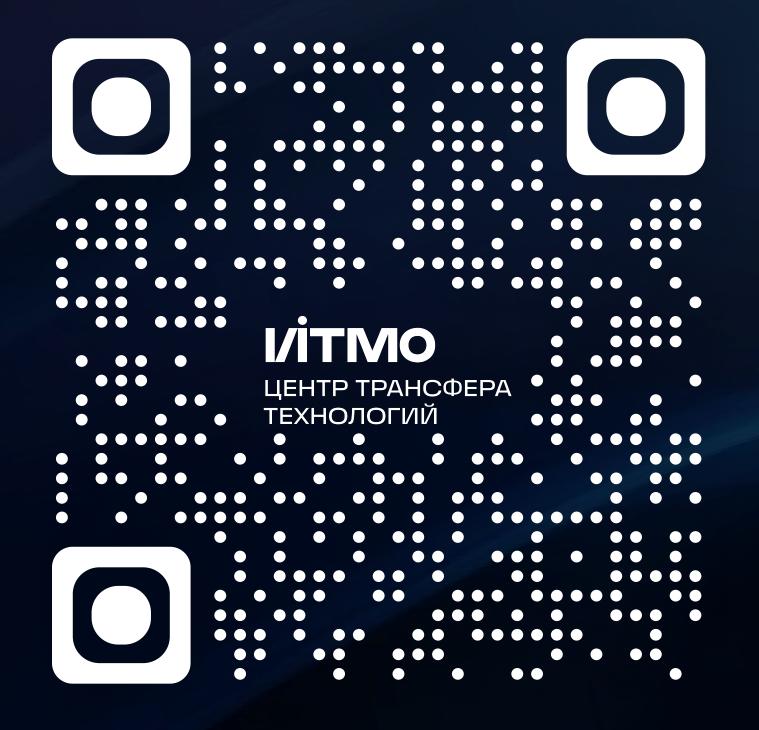
- Автомобильная промышленность: сварка, сборка, покраска, манипуляторы.
- Электроника и микроэлектроника: точное управление позиционированием, микро-манипуляторы, контроль чистоты и дефектов.

- Логистика и склады: роботизированные склады, конвейеры, pick-and-place, управление мобильными роботами.
- Машиностроение и металлообработка: лазерная резка, гибка, обработка точности, системы контроля дефектов.
- Пищевая, химическая и фармацевтическая промышленность: упаковка, дозировка, санитарные требования, управление сложными процессами.
- Сервисы / обслуживание: инспекция, техническое обслуживание, предиктивные системы, ремонт.

ПРЕПЯТСТВИЯ

- Высокие капитальные затраты: покупка, настройка, интеграция
- Квалификация персонала: нехватка инженеров, специалистов по системам управления, по программному обеспечению, по интеграции
- Инфраструктурные барьеры: устаревшие линии, плохая совместимость оборудования, слабая цифровая связь, низкая скорость передачи данных, недостаток сенсорной сети
- Регуляторные и стандартные риски: сертификация, стандарты безопасности, национальные требования, импортозависимость комплектующих

ПРОГРАММЫ ПОДДЕРЖКИ


• Государственная поддержка через Фонд развития промышленности (ФРП) и аналогичные структуры: субсидии и гранты на роботизацию и автоматизацию линий

ЭКОНОМИЧЕСКИЕ ЭФФЕКТЫ

- повышение производительности: сокращение времени простоя, быстрее переналадка, точность приводит к меньшему браку и отходам экономия ресурсов и материалов
- · снижение операционных затрат (OPEX): меньше человеческих ошибок, автоматизированный контроль (мониторинг, предиктивное обслуживание), снижение затрат на ремонт и обслуживани
 - увеличение выпуска: благодаря более высоким скоростям, возможностям непрерывной работы, более точной координации оборудования

ИСТОЧНИКИ: MARKETSANDMARKETS, MCKINSEY, АНАЛИТИЧЕСКИЙ ЦЕНТР ПРИ ПРАВИТЕЛЬСТВЕ РФ, МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РФ, МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, НИУ ВШЭ

ЦЕНТР ТРАНСФЕРА ТЕХНОЛОГИЙ УНИВЕРСИТЕТА ИТМО

tt@itmo.ru